Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38003573

RESUMEN

Atopic dermatitis is a chronic condition where epidermal barrier dysfunction and cytokine production by infiltrating immune cells exacerbate skin inflammation and damage. A total lipid extract from Macrocystis pyrifera, a brown seaweed, was previously reported to suppress inflammatory responses in monocytes. Here, treatment of human HaCaT keratinocytes with M. pyrifera lipids inhibited tumour necrosis factor (TNF)-α induced TNF receptor-associated factor 2 and monocyte chemoattractant protein (MCP)-1 protein production. HaCaT cells stimulated with TNF-α, interleukin (IL)-4, and IL-13 showed loss of claudin-1 tight junctions, but little improvement was observed following lipid pre-treatment. Three-dimensional cultures of HaCaT cells differentiated at the air-liquid interface showed increased MCP-1 production, loss of claudin-1 tight junctions, and trans-epidermal leakage with TNF-α, IL-4, and IL-13 stimulation, with all parameters reduced by lipid pre-treatment. These findings suggest that M. pyrifera lipids have anti-inflammatory and barrier-protective effects on keratinocytes, which may be beneficial for the treatment of atopic dermatitis or other skin conditions.


Asunto(s)
Dermatitis Atópica , Macrocystis , Humanos , Dermatitis Atópica/metabolismo , Macrocystis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-13/farmacología , Interleucina-13/metabolismo , Claudina-1/metabolismo , Queratinocitos/metabolismo , Lípidos/farmacología , Citocinas/metabolismo
2.
Food Funct ; 13(14): 7918-7929, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35789357

RESUMEN

Our previous studies have proved that the anti-digestive polysaccharide from Macrocystis pyrifera possesses potential hypoglycemic and lipid-lowering activities; however, its potential mechanisms for improving diabetes have not been elucidated. The current study was aimed to determine the anti-diabetic effects and possible mechanisms of Macrocystis pyrifera polysaccharides (MPP) in diabetic rats. After 8-week MPP treatment, the serum profiles, gut bacteria composition and relative gene expressions of rats were determined. MPP administration effectively ameliorated the diabetic symptoms, dyslipidemia, liver and kidney damage, oxidative stress and chronic inflammation in diabetic rats. In addition, MPP treatment could also notably improve the microbial dysbiosis by increasing the beneficial bacteria and decreasing a bacterial pathogen in the diabetic rats. The RT-qPCR analysis indicated that MPP intervention significantly up-regulated the IRS/PI3K/AKT signaling pathway and down-regulated the relative expressions of glucose-6-phosphatase (G-6-Pase), phosphoenolpyruvate carboxykinase (PEPCK), acetyl-CoA carboxylase (ACC), hydroxymethylglutaryl CoA reductase (HMGCR) and sterol regulatory element binding protein 1c (SREBP-1c) in diabetic rats. These results demonstrated that MPP had the potential to be exploited as functional foods or pharmaceutical supplements for preventing and treating diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Macrocystis , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hígado/metabolismo , Macrocystis/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Polisacáridos/metabolismo , Polisacáridos/farmacología , Ratas
3.
Proc Natl Acad Sci U S A ; 119(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34969854

RESUMEN

Disentangling the roles of the external environment and internal biotic drivers of plant population dynamics is challenging due to the absence of relevant physiological and abundance information over appropriate space and time scales. Remote observations of giant kelp biomass and photosynthetic pigment concentrations are used to show that spatiotemporal patterns of physiological condition, and thus growth and production, are regulated by different processes depending on the scale of observation. Nutrient supply was linked to regional scale (>1 km) physiological condition dynamics, and kelp forest stands were more persistent where nutrient levels were consistently high. However, on local scales (<1 km), internal senescence processes related to canopy age demographics determined patterns of biomass loss across individual kelp forests despite uniform nutrient conditions. Repeat measurements of physiology over continuous spatial fields can provide insights into complex dynamics that are unexplained by the environmental drivers thought to regulate abundance. Emerging remote sensing technologies that provide simultaneous estimates of abundance and physiology can quantify the roles of environmental change and demographics governing plant population dynamics for a wide range of aquatic and terrestrial ecosystems.


Asunto(s)
Macrocystis/metabolismo , Nutrientes/metabolismo , Biomasa , Ecosistema , Macrocystis/química , Macrocystis/crecimiento & desarrollo , Fotosíntesis , Dinámica Poblacional , Tecnología de Sensores Remotos
4.
Metallomics ; 11(4): 756-764, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30834917

RESUMEN

Brown algae include the strongest accumulators of iodine known among living systems. This paper reviews the current state of bioinorganic research in the field, focusing on the models Laminaria digitata, Macrocystis pyrifera and Ectocarpus siliculosus, and covering uptake and efflux, localization and biological significance of storage, as well as marine and atmospheric chemistry of iodine.


Asunto(s)
Yodo/metabolismo , Laminaria/metabolismo , Macrocystis/metabolismo , Phaeophyceae/metabolismo , Transporte Biológico , Inmunidad Innata , Yodo/inmunología , Laminaria/inmunología , Macrocystis/inmunología , Estrés Oxidativo , Phaeophyceae/inmunología
5.
J Inorg Biochem ; 177: 82-88, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28926758

RESUMEN

Despite its paramount role in the functioning of coastal ecosystems, relatively little is known about halogen metabolism in giant kelp (Macrocystis pyrifera). This is an important shortcoming given the potential implications for marine and atmospheric chemical processes in the wide distribution range of Macrocystis. The work presented here constitutes the first in depth investigation of the uptake, efflux, and of the physiological function of iodide in this important kelp species. Iodide uptake and efflux rates were measured in adult sporophytes of Macrocystis under normal and stressed (exogenous hydrogen peroxide and an elicitor-triggered oxidative burst) conditions. Kelp tissue took up iodide according to Michaelis-Menten type kinetics when incubated in seawater enriched with various concentrations of iodide. Upon the addition of exogenous hydrogen peroxide, simulating oxidative stress, a marked efflux of iodide occurred. In situ generation of hydrogen peroxide was elicited in Macrocystis upon the addition of oligomeric degradation products of alginate as well as arachidonic acid and methyl jasmonate constituting a defensive oxidative burst that could be linked to iodine accumulation. H2O2 was detected at the single cell level using dichlorohydrofluorescein diacetate, a fluorogenic probe capable of detecting intracellular H2O2. When assayed for vanadium haloperoxidase activity, several bromoperoxidase isoforms were detected as well as a single iodoperoxidase. Altogether, the results of this study show that Macrocystis has an elaborate iodine metabolism, which is likely significant for impacting iodine speciation in seawater around kelp beds and for volatile halogen emissions into the coastal atmosphere.


Asunto(s)
Yoduros/metabolismo , Yodo/metabolismo , Kelp/metabolismo , Macrocystis/metabolismo , Acetatos/metabolismo , Ácido Araquidónico/metabolismo , Ciclopentanos/metabolismo , Peróxido de Hidrógeno/metabolismo , Yoduro Peroxidasa/metabolismo , Yodo/análisis , Isoenzimas/metabolismo , Estrés Oxidativo , Oxilipinas/metabolismo , Peroxidasas/metabolismo
6.
Toxins (Basel) ; 9(6)2017 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-28604648

RESUMEN

The saxitoxin-group (STX-group) corresponds to toxic metabolites produced by cyanobacteria and dinoflagellates of the genera Alexandrium, Gymnodinium, and Pyrodinium. Over the last decade, it has been possible to extrapolate the areas contaminated with the STX-group worldwide, including Chile, a phenomenon that has affected ≈35% of the Southern Pacific coast territory, generating a high economic impact. The objective of this research was to study the toxicity of the STX-group in all aquatic organisms (bivalves, algae, echinoderms, crustaceans, tunicates, cephalopods, gastropods, and fish) present in areas with a variable presence of harmful algal blooms (HABs). Then, the toxic profiles of each species and dose of STX equivalents ingested by a 60 kg person from 400 g of shellfish were determined to establish the health risk assessment. The toxins with the highest prevalence detected were gonyautoxin-4/1 (GTX4/GTX1), gonyautoxin-3/2 (GTX3/GTX2), neosaxitoxin (neoSTX), decarbamoylsaxitoxin (dcSTX), and saxitoxin (STX), with average concentrations of 400, 2800, 280, 200, and 2000 µg kg-1 respectively, a species-specific variability, dependent on the evaluated tissue, which demonstrates the biotransformation of the analogues in the trophic transfer with a predominance of α-epimers in all toxic profiles. The identification in multiple vectors, as well as in unregulated species, suggests that a risk assessment and risk management update are required; also, chemical and specific analyses for the detection of all analogues associated with the STX-group need to be established.


Asunto(s)
Contaminación de Alimentos/análisis , Saxitoxina/análisis , Alimentos Marinos/análisis , Animales , Cianobacterias , Dinoflagelados , Cadena Alimentaria , Invertebrados/química , Invertebrados/metabolismo , Macrocystis/química , Macrocystis/metabolismo , Salmón/metabolismo , Saxitoxina/metabolismo
7.
J Theor Biol ; 421: 136-145, 2017 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-28385668

RESUMEN

Biological studies of the evolution of cooperation are challenging because this process is vulnerable to cheating. Many mechanisms, including kin discrimination, spatial structure, or by-products of self-interested behaviors, can explain this evolution. Here we propose that the evolution of cooperation can be induced by other cooperation. To test this idea, we used a model organism Dictyostelium discoideum because it exhibits two cooperative dormant phases, the fruiting body and the macrocyst. In both phases, the same chemoattractant, cyclic AMP (cAMP), is used to collect cells. This common feature led us to hypothesize that the evolution of macrocyst formation would be induced by coexistence with fruiting bodies. Before forming a mathematical model, we confirmed that macrocysts coexisted with fruiting bodies, at least under laboratory conditions. Next, we analyzed our evolutionary game theory-based model to investigate whether coexistence with fruiting bodies would stabilize macrocyst formation. The model suggests that macrocyst formation represents an evolutionarily stable strategy and a global invader strategy under this coexistence, but is unstable if the model ignores the fruiting body formation. This result indicates that the evolution of macrocyst formation and maintenance is attributable to coexistence with fruiting bodies. Therefore, macrocyst evolution can be considered as an example of evolution of cooperation induced by other cooperation.


Asunto(s)
Evolución Biológica , Comunicación Celular , Cuerpos Fructíferos de los Hongos , Macrocystis , Conducta Cooperativa , AMP Cíclico/metabolismo , AMP Cíclico/fisiología , Dictyostelium , Cuerpos Fructíferos de los Hongos/metabolismo , Cuerpos Fructíferos de los Hongos/fisiología , Macrocystis/citología , Macrocystis/metabolismo , Macrocystis/fisiología
8.
Physiol Plant ; 159(1): 107-119, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27293117

RESUMEN

Ocean acidification (OA), the ongoing decline in seawater pH, is predicted to have wide-ranging effects on marine organisms and ecosystems. For seaweeds, the pH at the thallus surface, within the diffusion boundary layer (DBL), is one of the factors controlling their response to OA. Surface pH is controlled by both the pH of the bulk seawater and by the seaweeds' metabolism: photosynthesis and respiration increase and decrease pH within the DBL (pHDBL ), respectively. However, other metabolic processes, especially the uptake of inorganic nitrogen (Ni ; NO3- and NH4+ ) may also affect the pHDBL . Using Macrocystis pyrifera, we hypothesized that (1) NO3- uptake will increase the pHDBL , whereas NH4+ uptake will decrease it, (2) if NO3- is cotransported with H+ , increases in pHDBL would be greater under an OA treatment (pH = 7.65) than under an ambient treatment (pH = 8.00), and (3) decreases in pHDBL will be smaller at pH 7.65 than at pH 8.00, as higher external [H+ ] might affect the strength of the diffusion gradient. Overall, Ni source did not affect the pHDBL . However, increases in pHDBL were greater at pH 7.65 than at pH 8.00. CO2 uptake was higher at pH 7.65 than at pH 8.00, whereas HCO3- uptake was unaffected by pH. Photosynthesis and respiration control pHDBL rather than Ni uptake. We suggest that under future OA, Macrocystis pyrifera will metabolically modify its surface microenvironment such that the physiological processes of photosynthesis and Ni uptake will not be affected by a reduced pH.


Asunto(s)
Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Macrocystis/metabolismo , Nitrógeno/metabolismo , Fotosíntesis , Agua de Mar/química , Microambiente Celular , Concentración de Iones de Hidrógeno , Océanos y Mares , Oxígeno/metabolismo
9.
J Phycol ; 53(1): 85-94, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27861900

RESUMEN

In the Monterey Bay region of central California, the giant kelp Macrocystis pyrifera experiences broad fluctuations in wave forces, temperature, light availability, nutrient availability, and seawater carbonate chemistry, all of which may impact their productivity. In particular, current velocities and light intensity may strongly regulate the supply and demand of inorganic carbon (Ci) as substrates for photosynthesis. Macrocystis pyrifera can acquire and utilize both CO2 and bicarbonate (HCO3- ) as Ci substrates for photosynthesis and growth. Given the variability in carbon delivery (due to current velocities and varying [DIC]) and demand (in the form of saturating irradiance), we hypothesized that the proportion of CO2 and bicarbonate utilized is not constant for M. pyrifera, but a variable function of their fluctuating environment. We further hypothesized that populations acclimated to different wave exposure and irradiance habitats would display different patterns of bicarbonate uptake. To test these hypotheses, we carried out oxygen evolution trials in the laboratory to measure the proportion of bicarbonate utilized by M. pyrifera via external CA under an orthogonal cross of velocity, irradiance, and acclimation treatments. Our Monterey Bay populations of M. pyrifera exhibited proportionally higher external bicarbonate utilization in high irradiance and high flow velocity conditions than in sub-saturating irradiance or low flow velocity conditions. However, there was no significant difference in proportional bicarbonate use between deep blades and canopy blades, nor between individuals from wave-exposed versus wave-protected sites. This study contributes a new field-oriented perspective on the abiotic controls of carbon utilization physiology in macroalgae.


Asunto(s)
Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Ambiente , Kelp/metabolismo , Macrocystis/metabolismo , California , Océano Pacífico
10.
Oecologia ; 182(2): 397-404, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27342660

RESUMEN

The turnover of plant biomass largely determines the amount of energy flowing through an ecosystem and understanding the processes that regulate turnover has been of interest to ecologists for decades. Leaf life span theory has proven useful in explaining patterns of leaf turnover in relation to resource availability, but the predictions of this theory have not been tested for macroalgae. We measured blade life span, size, thickness, nitrogen content, pigment content, and maximum photosynthetic rate (P max) in the giant kelp (Macrocystis pyrifera) along a strong resource (light) gradient to test whether the predictions of leaf life span theory applied to this alga. We found that shorter blade life spans and larger blade areas were associated with increased light availability. In addition, nitrogen and P max decreased with blade age, and their decrease was greater in shorter lived blades. These observations are generally consistent with patterns observed for higher plants and the prevailing theory of leaf life span. By contrast, variation observed in pigments of giant kelp was inconsistent with that predicted by leaf life span theory, as blades growing in the most heavily shaded portion of the forest had the lowest chlorophyll content. This result may reflect the dual role of macroalgal blades in carbon fixation and nutrient absorption and the ability of giant kelp to modify blade physiology to optimize the acquisition of light and nutrients. Thus, the marine environment may place demands on resource acquisition and allocation that have not been previously considered with respect to leaf life span optimization.


Asunto(s)
Macrocystis/metabolismo , Clorofila/metabolismo , Ecosistema , Fotosíntesis
11.
Metallomics ; 8(4): 403-11, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27009567

RESUMEN

Iron is an essential element for all living organisms due to its ubiquitous role in redox and other enzymes, especially in the context of respiration and photosynthesis. Although the iron uptake and storage mechanisms of terrestrial/higher plants have been well-studied, the corresponding systems in marine algae have received far less attention. While the iron many marine algae take up from the environment, irrespective of its detailed internalization mechanism, arrives at the cell surface by diffusion, there is growing evidence for more "active" means of concentrating this element prior to uptake. It has been well established in both laboratory and environmentally derived samples, that a large amount of iron can be "non-specifically" adsorbed to the surface of marine algae. While this phenomenon is widely recognized and has prompted the development of experimental protocols to eliminate its contribution to iron uptake studies, its potential biological significance as a concentrated iron storage source for marine algae is only now being recognized. In this study, using an interdisciplinary array of techniques, we show that the giant kelp Macrocystis pyrifera also displays significant cell surface bound iron although less than that seen with the related brown alga Ectocarpus siliculosus. The iron on the surface is likely bound to carboxylate groups and once inside the iron is found to localize differently depending on cell type. Iron appears to be stored in an as yet undefined mineral phase.


Asunto(s)
Membrana Celular/metabolismo , Hierro/metabolismo , Macrocystis/metabolismo , 3,3'-Diaminobencidina/metabolismo , Azoles/metabolismo , Fluorescencia , Espacio Intracelular/metabolismo , Cinética , Espectroscopía de Mossbauer , Termodinámica
12.
Huan Jing Ke Xue ; 36(1): 357-64, 2015 Jan.
Artículo en Chino | MEDLINE | ID: mdl-25898687

RESUMEN

Batch experiments were conducted to analyze the effects of pretreatment conditions, inoculum-substrate ratio (ISR) and initial pH on the hydrogen and volatile fatty acid (VFA) production from anaerobic digestion of Macrocystis pyrifera biomass. The results indicated that M. pyrifera could produce hydrogen and VFA simultaneously. In addition, thermo-alkaline pretreatment was proved as the best method for hydrogen and VFA production. The optimal pretreatment conditions, ISR, initial pH value were determined as thermal-alkaline pretreatment at 100 degrees C with 4 g x L(-1) NaOH, 0.3 and 6, respectively. Under these conditions, the maximum hydrogen production was 36.21 mL x g(-1) per unit volatile solids, which resulted in 77.82% improvement compared with the yield from untreated M. pyrifera. Furthermore, the TVFA yield under the optimal conditions was found to be 0.15 g x g(-1) per unit volatile solids and the VFAs mainly consisted of acetate and butvrate


Asunto(s)
Ácidos Grasos Volátiles/biosíntesis , Hidrógeno/metabolismo , Macrocystis/metabolismo , Acetatos , Anaerobiosis , Biomasa , Fermentación
13.
Bioresour Technol ; 179: 490-496, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25575209

RESUMEN

Integrated hydroxyl radicals and hot water pretreatment (IHRHW) was employed in the bioconversion of the brown macroalgae Macrocystis pyrifera (M. pyrifera) in this study. The optimum experimental pretreatment condition (100°C, 30 min, 11.9 mM FeSO4) and the predicted optimum pretreatment condition (113.95°C, 29.1 min, 12.75 mM FeSO4) were identified using a central composite design method. All glucan and xylan were recovered as monosaccharides or polysaccharides without a fermentation inhibitor (e.g., hydroxymethyl furfural and furfural). The IHRHW-treated macroalgae digestibility reached 88.1% under the optimum experimental condition, whereas that under the predicted optimum condition reached 92.1%. The value was approximately threefold higher than those obtained with untreated M. pyrifera. Carbohydrate recovery and enzymatic hydrolysis can be significantly enhanced by the new economic hydroxyl radicals and hot water pretreatment.


Asunto(s)
Biotecnología/métodos , Calor , Radical Hidroxilo/farmacología , Macrocystis/metabolismo , Agua/farmacología , Estudios de Factibilidad , Fermentación/efectos de los fármacos , Compuestos Ferrosos/farmacología , Glucosa/análisis , Hidrólisis , Macrocystis/efectos de los fármacos , Reproducibilidad de los Resultados , Espectroscopía Infrarroja por Transformada de Fourier , Factores de Tiempo , Difracción de Rayos X
14.
Oecologia ; 174(3): 789-801, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24100758

RESUMEN

Damage by small herbivores can have disproportionately large effects on the fitness of individual plants if damage is concentrated on valuable tissues or on select individuals within a population. In marine systems, the impact of tissue loss on the growth rates of habitat-forming algae is poorly understood. We quantified the grazing damage by an isopod Amphoroidea typa on two species of large kelps, Lessonia spicata and Macrocystis pyrifera, in temperate Chile to test whether non-lethal grazing damage could reduce kelp growth rates and photosynthetic efficiency. For L. spicata, grazing damage was widespread in the field, unevenly distributed on several spatial scales (among individuals and among tissue types) and negatively correlated with blade growth rates. In field experiments, feeding by A. typa reduced the concentration of photosynthetic pigments and led to large reductions (~80%) in blade growth rates despite limited loss of kelp biomass (0.5% per day). For M. pyrifera, rates of damage in the field were lower and high densities of grazers were unable to reduce growth rates in field experiments. These results demonstrate that even low per capita grazing rates can result in large reductions in the growth of a kelp, due the spatial clustering of herbivores in the field and the selective removal of photosynthetically active tissues. The impacts of small herbivores on plant performance are thus not easily predicted from consumption rates or abundance in the field, and vary with plant species due to variation in their ability to compensate for damage.


Asunto(s)
Herbivoria , Isópodos , Macrocystis/crecimiento & desarrollo , Animales , Biomasa , Chile , Ecosistema , Macrocystis/metabolismo , Fotosíntesis
15.
Electron. j. biotechnol ; 16(3): 6-6, May 2013. ilus, tab
Artículo en Inglés | LILACS | ID: lil-684004

RESUMEN

Background: The increased industrial activity has resulted in the discharge of large amount of pollutants including non-degradable metals into the environment. Chromium is produced in several industrial processes and it can be found in the environment in two stable oxidation states, Cr(VI) and Cr(III). Cr(VI) is more hazardous due to its carcinogenic and mutagenic effects on living organisms. Although much less toxic, Cr(III) can also exert genotoxic effects under prolonged or severe exposure. It can be separated from the solution by precipitation but biosorption using brown algae seems to be an effective and sustainable treatment technique owing to its cost-effectiveness and environmental friendly characteristics. Macrocystis pyrifera and Undaria pinnatifida are two marine brown macroalgae with high capability of removing heavy metals including Cr(III) in batch mode of operation. In this work packed bed biosorption of Cr(III) by M. pyrifera and U. pinnatifida biomasses was evaluated. Results: The shapes of the breakthrough curves were rather different for each biomaterial. Parameters like the breakthrough time (t b) andzone mass transfer (MTZ) showed that U. pinnatifida has greater affinity for Cr(III). The maximum adsorption capacity at the exhaustion operating time (t e) demonstrated that M. pyrifera has higher retention capacity of Cr(III). The experimental data were fitted to Thomas, Yoon-Nelson and Dose-Response models. The best correlation coefficient (0.94 or 0.96) was obtained with Dose-Response that accurately describes the uptake behaviour of Cr(III) on the seaweed biomasses under different experimental conditions. The FT-IR spectra evidenced that Cr(III) adsorption occurred mainly by interaction between metal and carboxylate groups present on both the seaweed surfaces. Conclusions: M. pyrifera and U. pinnatifida biomasses are efficient biosorbents for Cr(III) adsorption under a continuous mode of operation although differences between uptake capacities suggest different mechanisms involved in the biosorption.


Asunto(s)
Metales Pesados/metabolismo , Macrocystis/metabolismo , Undaria/metabolismo , Contaminantes Industriales , Cromo/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Biomasa , Adsorción , Phaeophyceae
16.
New Phytol ; 198(2): 398-407, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23488966

RESUMEN

To increase knowledge of transcript diversity for the giant kelp, Macrocystis pyrifera, and assess gene expression across naturally occurring depth gradients in light, temperature and nutrients, we sequenced four cDNA libraries created from blades collected at the sea surface and at 18 m depth during the winter and summer. Comparative genomics cluster analyses revealed novel gene families (clusters) in existing brown alga expressed sequence tag data compared with other related algal groups, a pattern also seen with the addition of M. pyrifera sequences. Assembly of 228 Mbp of sequence generated c. 9000 isotigs and c. 12,000 open reading frames. Annotations were assigned using families of hidden Markov models for c. 11% of open reading frames; M. pyrifera had highest similarity to other members of the Phaeophyceae, namely Ectocarpus siliculosus and Laminaria digitata. Quantitative polymerase chain reaction of transcript targets verified depth-related differences in gene expression; stress response and light-harvesting transcripts, especially members of the LI818 (also known as LHCSR) family, showed high expression in the surface compared with 18 m depth, while some nitrogen acquisition transcripts (e.g. nitrite reductase) were upregulated at depth compared with the surface, supporting a conceptual biological model of depth-dependent physiology.


Asunto(s)
Perfilación de la Expresión Génica , Macrocystis/genética , Macrocystis/metabolismo , Océanos y Mares , Estaciones del Año , Análisis por Conglomerados , Etiquetas de Secuencia Expresada , Biblioteca de Genes , Luz , Macrocystis/fisiología , Macrocystis/efectos de la radiación , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN , Estadística como Asunto , Temperatura
17.
Artículo en Inglés | MEDLINE | ID: mdl-23379944

RESUMEN

The results of total ammoniacal nitrogen (NH(3) + NH(4) (+)) removal in aquaculture systems using two experimental sets, aquatic seedlings produced in laboratory controlled conditions and wild seaweed (Macrocystis spp.) in reproductive state, are shown in this work. Biofiltration assays were carried out using a load of total ammoniacal nitrogen (TAN) of 1 mg/L. Absorption rates were measured taking into account a previous surface characterization, which gave values of 44 ± 14 cm(2)/g and 18 ± 6 cm(2)/g for aquatic seedlings and wild algae, respectively. The following parameters were measured during the experimental runs: temperature, pH, O(2), illuminance or light intensity, salinity and total solids. TAN removals of 61% and 70% were achieved for the seedlings and Macrocystis spp., respectively, after 17 h of treatment. The TAN absorption results were expressed as a function of surface and mass achieving the following values: 3.0 nmol N cm(-2) h(-1) and 111 nmol N g(-1) h(-1) for the seedlings, and 6.9 nmol N cm(-2) h(-1) and 122.4 nmol N g(-1) h(-1) for the macroalgae. In the light of these biofiltration processes, the initial TAN concentration decreased by 90% for the seedlings and wild algae over approximately 110 and 41 h, respectively. In addition, TAN removals achieved with Macrocystis spp. were always higher than those obtained with aquatic seedlings for the same operating periods.


Asunto(s)
Amoníaco/química , Macrocystis/metabolismo , Nitrógeno/aislamiento & purificación , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Amoníaco/metabolismo , Acuicultura , Filtración , Concentración de Iones de Hidrógeno , Salinidad , Temperatura , Contaminantes Químicos del Agua/metabolismo
18.
Biochim Biophys Acta ; 1827(3): 427-37, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23287384

RESUMEN

Nonphotochemical quenching (NPQ) of Photosystem II fluorescence is one of the most important photoprotection responses of phototropic organisms. NPQ in Macrocystis pyrifera is unique since the fast induction of this response, the energy dependent quenching (qE), is not present in this alga. In contrast to higher plants, NPQ in this organism is much more strongly related to xanthophyll cycle (XC) pigment interconversion. Characterization of how NPQ is controlled when qE is not present is important as this might represent an ancient response to light stress. Here, we describe the influence of the XC pigment pool (ΣXC) size on NPQ induction in M. pyrifera. The sum of violaxanthin (Vx) plus antheraxanthin and zeaxanthin (Zx) represents the ΣXC. This pool was three-fold larger in blades collected at the surface of the water column (19molmol(-1) Chl a×100) than in blades collected at 6m depth. Maximum NPQ was not different in samples with a ΣXC higher than 12molmol(-1) Chl a×100; however, NPQ induction was faster in blades with a large ΣXC. The increase in the NPQ induction rate was associated with a faster Vx to Zx conversion. Further, we found that NPQ depends on the de-epoxidation state of the ΣXC, not on the absolute concentration of Zx and antheraxanthin. Thus, there was an antagonist effect between Vx and de-epoxidated xanthophylls for NPQ. These results indicate that in the absence of qE, a large ΣXC is needed in M. pyrifera to respond faster to light stress conditions.


Asunto(s)
Macrocystis/metabolismo , Xantófilas/química , Compuestos Epoxi/química , Luz , Zeaxantinas
19.
Bioresour Technol ; 116: 195-203, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22609676

RESUMEN

Zinc and cadmium can be efficiently removed from solutions using the brown algae, Macrocystis pyrifera. Treatment with CaCl(2) allowed stabilization of the biosorbent. The maximum biosorption capacities in mono-component systems were 0.91 mmol g(-1) and 0.89 mmol g(-1) and the Langmuir affinity coefficients were 1.76 L mmol(-1) and 1.25 L mmol(-1) for Zn(II) and Cd(II), respectively. In two-component systems, Zn(II) and Cd(II) adsorption capacities were reduced by 50% and 40%, respectively and the biosorbent showed a preference for Cd(II) over Zn(II). HNO(3) (0.1M) and EDTA (0.1M) achieved 90-100% desorption of both ions from the loaded biomass. While HNO(3) preserved the biomass structure, EDTA destroyed it completely. Fourier transform infrared spectra identified the contribution of carboxylic, amine and sulfonate groups on Zn(II) and Cd(II) biosorption. These results showed that biosorption using M. pyrifera-treated biomass could be an affordable and simple process for cadmium and zinc removal from wastewaters.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Cadmio/aislamiento & purificación , Calcio/farmacología , Macrocystis/efectos de los fármacos , Macrocystis/metabolismo , Zinc/aislamiento & purificación , Adsorción/efectos de los fármacos , Biodegradación Ambiental/efectos de los fármacos , Biomasa , Cinética , Solventes , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
20.
Environ Sci Technol ; 46(7): 3731-6, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22394401

RESUMEN

The Fukushima Daiichi Nuclear Plant, damaged by an earthquake and tsunami on March 11, 2011 released large amounts of (131)I into the atmosphere, which was assimilated into canopy blades of Macrocystis pyrifera sampled from coastal California. The specific activity calculated to the estimated date of deposition/assimilation ranged from 0.6 to 2.5 Bq gdwt(-1), levels greater than those measured from kelps from Japan and Canada prior to the release. These (131)I levels represent a significant input into the kelp forest ecosystem. Canopy-forming kelps are a natural coastal dosimeter that can measure the exposure of the coastal environment to (131)I and perhaps other radioisotopes released from nuclear accidents. An organizational mechanism should be in place to ensure that they are sampled immediately and continuously after such releases.


Asunto(s)
Monitoreo del Ambiente/métodos , Kelp/metabolismo , Macrocystis/metabolismo , Reactores Nucleares , Radiometría/métodos , Agua de Mar/química , Colapso de la Estructura , California , Ecosistema , Rayos gamma , Geografía , Radioisótopos de Yodo , Japón , Lluvia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...